Diffusion magnetic resonsance imaging (dMRI) can potentially predict the postoperative outcome of cervical spondylotic myelopathy (CSM). To explore preoperative dMRI parameters to predict the postoperative outcome of CSM through multifactor correlation analysis. Prospective. Post-surgery CSM patients; 102 total, 73 male (52.42 ± 10.60 years old) and 29 female (52.0 ± 11.45 years old). 3.0 T/Turbo spin echo T1/T2-weighted, T2*-weighted multiecho gradient echo and dMRI. Spinal cord function was evaluated using modified Japanese Orthopedic Association (mJOA) scoring at different time points: preoperative and 3, 6, and 12 months postoperative. Single-factor correlation and t test analyses were conducted based on fractional anisotropy (FA), mean diffusivity, intracellular volume fraction, isotropic volume fraction, orientation division index, increased signal intensity, compression ratio, age, sex, symptom duration and operation method, and multicollinearity was calculated. The linear quantile mixed model (LQMM) and the linear mixed-effects regression model (LMER) were used for multifactor correlation analysis using the combinations of the above variables. Distance correlation, Pearson's correlation, multiscale graph correlation and t tests were used for the single-factor correlation analyses. The variance inflation factor (VIF) was used to calculate multicollinearity. LQMM and LMER were used for multifactor correlation analyses. P < 0.05 was considered statistically significant. The single-factor correlation between all variables and the postoperative mJOA score was weak (all r < 0.3). The linear relationship was stronger than the nonlinear relationship, and there was no significant multicollinearity (VIF = 1.10-1.94). FA values in the LQMM and LMER models had a significant positive correlation with the mJOA score (r = 5.27-6.04), which was stronger than the other variables. The FA value based on dMRI significantly positively correlated with CSM patient postoperative outcomes, helping to predict the surgical outcome and formulate a treatment plan before surgery. 1 TECHNICAL EFFICACY: Stage 2.
Read full abstract