This study was conducted to examine the role of radiosurgery in the management of patients with recurrent or unresectable low-grade astrocytomas. During a 13-year interval, 49 patients underwent stereotactic radiosurgery as part of multimodal treatment of their recurrent or unresectable low-grade astrocytomas. Thirty-seven of these patients (median age 14 years) harbored pilocytic astrocytomas and 12 patients harbored World Health Organization (WHO) Grade II fibrillary astrocytomas (median age 25 years). Tumors involved the brainstem in 22 cases, cerebellum in four, thalamus in six, temporal lobe in five, frontal lobe in four, and parietal lobe in three, as well as the hypothalamus, corpus callosum, insular cortex, optic tract, and third ventricle in one patient each. Each diagnosis was confirmed with the aid of stereotactic biopsy sampling in 17 patients, open biopsy sampling in five, partial resection in 13, and near-total resection in 14. Multimodal treatment included fractionated radiotherapy in 14 patients, stereotactic intracavitary irradiation in five, chemotherapy in two, cyst drainage in eight, ventriculoperitoneal shunt placement in five, and additional cytoreductive surgery in five. Tumor volumes ranged from 0.42 to 45.1 cm3. The median radiosurgical dose to the tumor margin was 15 Gy (range 9.6-22.5 Gy). After radiosurgery, serial neuroimaging demonstrated complete tumor resolution in 11 patients, reduced tumor volume in 12, stable tumor volume in 10, and delayed tumor progression in 16. No procedure-related death was encountered. Forty-five of 49 patients are alive at a median follow-up period of 32 months after radiosurgery and 63 months after diagnosis. Sixteen patients participated in follow-up review for more than 60 months. Three patients died of local tumor progression. Stereotactic radiosurgery is a potential alternative or adjunctive intervention in the management of selected patients with pilocytic or WHO Grade II fibrillary astrocytomas, usually performed for small-volume tumors in an attempt to avoid larger-field fractionated radiotherapy.
Read full abstract