Stroke management employs a variety of diagnostic imaging modalities, image processing and analysis methods, and treatment procedures. This work categorizes methods for stroke imaging, image processing and analysis, and treatment, and provides their taxonomies illustrated by a state-of-the-art review. Imaging plays a critical role in stroke management, and the most frequently employed modalities are computed tomography (CT) and magnetic resonance (MR). CT includes unenhanced non-contrast CT as the first-line diagnosis, CT angiography, and CT perfusion. MR is the most complete method to examine stroke patients. MR angiography is useful to evaluate the severity of artery stenosis, vascular occlusion, and collateral flow. Diffusion-weighted imaging is the gold standard for evaluating ischemia. MR perfusion-weighted imaging assesses the penumbra. The stroke image processing methods are divided into non-atlas/template-based and atlas/template-based. The non-atlas/template-based methods are subdivided into intensity and contrast transformations, local segmentation-related, anatomy-guided, global density-guided, and artificial intelligence/deep learning-based. The atlas/template-based methods are subdivided into intensity templates and atlases with three atlas types: anatomy atlases, vascular atlases, and lesion-derived atlases. The treatment procedures for arterial and venous strokes include intravenous and intraarterial thrombolysis and mechanical thrombectomy. This work captures the stateoftheart in stroke management summarized in the form of comprehensive and straightforward taxonomy diagrams. All three introduced taxonomies in diagnostic imaging, image processing and analysis, and treatment are widely illustrated and compared against other state-of-the-art classifications.
Read full abstract