The purpose of the present study was to investigate whether bone marrow mesenchymal stem cells (BMMSCs) modified by CXC-chemokine receptor type 3 (CXCR3) and heme oxygenase-1 (HO-1) genes can repair damaged intestinal epithelial cells in vitro, and the role of the p38 mitogen-activated protein kinase (p38-MAPK) pathway in this process. A model of intestinal epithelial crypt cell line-6 (IEC-6) damage was created, and BMMSCs were transfected with either the CXCR3 and/or HO-1 gene in vitro. There were nine experimental groups in which the damaged IEC-6 cells were co-cultured with differentially-treated BMMSCs and lymphocytes for 24 h. Reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemistry and a western blot analysis were performed to detect stem cell transfection, the repair of damaged intestinal epithelial cells and the expression of related molecules in the P38-MAPK pathway, respectively. Crystal violet staining and live cell imaging were used to detect the chemotaxis of BMMSCs. Flow cytometry was used to detect T lymphocyte activity and the surface markers expressed on BMMSCs. An ELISA was used to quantify cytokine production. The adenovirus (Ad)-CXCR3/MSCs exhibited the characteristics of stem cells and exhibited chemotaxis. The Ad-CXCR3/MSCs and Ad-(CXCR3 + HO)/MSCs exhibited increased expression of tight junction protein zonula occludens-1 (ZO-1) and anti-proliferating cell nuclear antigen in the damaged IEC-6 cells, and apoptosis of the damaged IEC-6 cells was decreased. BMMSCs inhibited the phosphorylation of p38, in addition to downstream molecules of the p38MAPK signaling pathway. The Ad-CXCR3/MSCs and Ad-(CXCR3 + HO)/MSCs exhibited significantly decreased expression levels of downstream molecules, including phosphorylated (p)-p38, p-activated transcription factor 2, p-C/EBP homologous protein-10, and p-myocyte enhancer factor 2C, and target molecules (e.g., apoptotic bodies). The effects of Ad-(CXCR3 + HO)/MSCs on the repair of the damaged intestinal tract and inhibition of the p38-MAPK pathway was more marked than those in other groups on day 7 post-surgery in the rejection model for small bowel transplantation. BMMSCs modified by the CXCR3 and HO-1 genes exhibited superior ability to repair damaged intestinal epithelial cells and served this role via the p38-MAPK pathway.
Read full abstract