This research introduces the design, implementation, and rigorous evaluation of a novel 2-channel, multi-functional therapeutic electrical stimulator, meticulously engineered to meet the stringent demands of contemporary clinical applications. The device integrates a high-speed R-2R ladder DAC and a sophisticated pulse generator unit, capable of producing twelve essential current waveforms with fully adjustable parameters, including pulse amplitude, pulse duration, and pulse repetitive frequency. The proposed driving stage unit ensures precise voltage-to-current conversion, delivering stable and accurate output currents even under varying load conditions, which effectively simulate the diverse impedance characteristics of human tissue. Extensive testing confirmed the compliance with international medical standards, notably IEC 60601-1, IEC 60601-1-2, and IEC 60601-2-10. The experimental results underscore the device’s consistent operation within prescribed safety and performance thresholds, with all deviations in pulse parameters remaining well below the permissible limits. Furthermore, the proposed electrical stimulator demonstrated exceptional stability across variable load conditions, as evidenced by minimal amplitude errors and high correlation between waveform characteristics. These findings highlight the proposed device’s robustness and its potential as a versatile tool for a wide range of therapeutic applications, including pain management, muscle stimulation, and nerve rehabilitation, thus marking a significant advancement in the field of therapeutic electrical stimulation.
Read full abstract