Staphylococcus aureus infections are a growing concern worldwide due to the increasing number of strains that exhibit antibiotic resistance. Recent studies have indicated that some percentage of people carry the bacteria in the nasal cavity and therefore are at a higher risk of subsequent, and more serious, infections in other parts of the body. However, individuals carrying the infection can be classified as only intermittent carriers versus persistent carriers, being able to eliminate the bacteria and later colonized again. Using a model of bacterial colonization of the anterior nares, we investigate oscillatory patterns related to intermittent carriage of S. aureus. Following several studies using global sensitivity analysis techniques, various insights into the model's behaviour were made including interacting effects of the bacteria's growth rate and movement in the mucus, suggesting parameter connections associated with biofilm-like behaviour. Here the bacterial growth rate and bacterial movement are explicitly connected, leading to expanded oscillatory behaviour in the model. We suggest possible implications that this oscillatory behaviour can have on the definition of intermittent carriage and discuss differences in the bacterial virulence dependent upon individual host health. Furthermore, we show that connecting the bacterial growth and movement also expands the region of the parameter space for which the bacteria are able to survive and persist.
Read full abstract