The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedlyaltered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Read full abstract