Bubble drainage (BD) occurs in various natural phenomena and industrial activities, in which bubbles rise toward the water surface and create a progressively thinned two-sided liquid film, called a lamella. Surfactant, as an important regulator in the BD process, not only assembles on both sides of the lamellae, generating a configuration of lamellae sandwiched by monolayers of surfactants (lamellae/MS), but also induces interfacial deformation by lowering interfacial tension. Herein, we developed a strategy of BD assisted interfacial polymerization for the fabrication of polyamide (PA) membranes. The regulated interfacial deformation at the water-oil interface produced a membrane with crater-like structures, which greatly increased the surface area of the PA membrane. Moreover, the lamellae/MS configuration served as a reservoir to spontaneously enrich amine monomers and thus modulate the diffusion-reaction kinetics. The resulting PA membranes exhibited superior separation performance with a water permeance of 44.7 L m-2 h-1 bar-1 and a Na2SO4 rejection of 99.2%.
Read full abstract