Capturing noncooperative targets in space has garnered continuous research interest in aerospace applications. This study addresses the demands of large-scale, multifaceted activities and varied working conditions for space capture missions by designing a space capture robot composed of multiple cable-driven manipulators operating in parallel. First, single- and multi-segment cable-driven robot models were designed, and a geometric model was subsequently built. The optimal number of segments was determined by analysing the condition number of a Jacobian matrix using the Monte Carlo method. Subsequently, based on the constant-curvature assumption, a kinematic model of the cable-driven space capture robot was formulated, and capture methods for different capture targets were designed using the Monte Carlo method. Finally, an eight-segment cable-driven robot prototype was developed, and compliance and driving experiments were conducted. This robot exhibits promising application potential for space noncooperative target capture and can be feasibly manufactured using on-orbit 3D machining technology.
Read full abstract