As global economies seek to transition to low-carbon energy systems to achieve net zero targets, hydrogen has potential to play a key role to decarbonise sectors that are unsuited to electrification or where long-term energy storage is required. Hydrogen can also assist in enabling decentralized renewable power generation to satisfy higher electricity demand to match the scale-up of electrified technologies. In this context, suitable transport, storage, and distribution networks will be essential to connect hydrogen generation and utilisation sites. This paper presents a techno-economic impact evaluation of international marine hydrogen transportation between Canada and the Netherlands, comparing liquid hydrogen, ammonia, and a dibenzyl toluene liquid organic hydrogen carrier (LOHC) as potential transport vectors. Economic costs, energy consumption and losses in each phase of the transportation system were analysed for each vector. Based on the devised scenarios, our model suggests levelised costs of hydrogen of 6.35–9.49 $2022/kgH2 and pathway efficiencies of 55.6–71.9%. While liquid hydrogen was identified as the most cost-competitive carrier, sensitivity analysis revealed a merit order for system optimisation strategies, based upon which LOHC could outperform both liquid hydrogen and ammonia in the future.
Read full abstract