The El Niño-Southern Oscillation (ENSO) is a primary driver of interannual variability in extreme precipitation in many regions worldwide. Understanding the relationship between ENSO and extreme precipitation is crucial, as it has implications for understanding the interannual variability of flood risk. We investigated the frequency of extreme daily precipitation in Southwest Asia across different seasons during El Niño and La Niña using the daily GPCP and ERA5 precipitation datasets for the period 1997–2022. Extreme precipitation at each grid point is defined as daily accumulated precipitation exceeding the 95th percentile on wet days, where a wet day is defined as one with at least 0.1 mm rainfall. El Niño is associated with an overall increase in the frequency of extreme precipitation in Southwest Asia during autumn, winter, and spring, whereas La Niña shows the opposite effect. To explore the dynamics of El Niño and La Niña teleconnections to Southwest Asia, we applied a feature tracking method on the ERA5 relative velocity at 850 hPa in different seasons. Overall, the storm track density and the mean intensity of storms increase in Southwest Asia during El Niño and decrease during La Niña in autumn, winter, and spring. In summer, El Niño favors less frequent extreme precipitation in the southern parts of Southwest Asia, where the tropical summer monsoon circulation is dominated, while La Niña is associated with more frequent extreme precipitation in this region. This pattern is expected, as the monsoon circulation is weaker during El Niño and stronger during La Niña. In line with this, we identified a decrease in the mean intensity of storms in the southern parts of Southwest Asia during El Niño, with the opposite occuring during La Niña. Our findings have important implications for understanding interannual variability of extreme precipitation in Southwest Asia and providing a framework for predicting such events.
Read full abstract