The purpose of this study was to systematically examine the normal tissue objective (NTO) function by comparing its variations for planning solitary brain metastasis with intensity-modulated and volumetric-modulated arc radiosurgery techniques. Twenty-two cases were retrospectively planned with two NTO parameter sets named A and B using intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques. The Type A set used slope, k = 0.4 mm-1 plus end dose, De = 20%, whereas the Type B set used k = 1.0 mm-1 plus De = 10%. The resulting four plan types were assessed using mean dose to 5 mm exterior ring, normal brain receiving 12 Gy (V12), 5 Gy total brain dose volume (V5), gradient index (R50%), focal index (FI), Paddick conformity index (PCI), prescription isodose surface (PIDS), and MU/Gy. Brain doses were significantly lower for VMAT than for IMRT. R50% was more favorable for VMAT than for IMRT for each planning target volume (PTV). The mean FI was comparable between the corresponding IMRT and VMAT plan types. PCI was better for the IMRT_A plan type. PIDS was significantly lower for Type B plans than Type A for both techniques. For PTVs <3 cm3, IMRT plans showed poor dosimetry and required NTO settings stricter than Type B. The application of NTO variations demonstrated varied dosimetry for IMRT and VMAT techniques. The NTO parameter variations produced field size and/or beamlet size/shape variations. The strict NTO parameter set generated more conformal beam apertures to reduce the brain dose. VMAT plan types showed significantly lower brain doses and better dosimetry for all target sizes.
Read full abstract