After nearly 3 years without a single central line-associated bloodstream infection (CLABSI), our neonatal intensive care unit (NICU) experienced a significant rise in CLABSI rates beginning in 2019. The increase coincided with changes made to the intravenous (IV) medication pump integration process, which added more safety checks and procedural steps. This study aimed to investigate the potential association between these process changes and increased CLABSI and non-CLABSI (bloodstream infection, BSI) rates prior to inclusion in a future QI project Key Driver Diagram.This observational pilot study used a mixed-methods approach, including statistical process control analysis to confirm a special-cause increase in CLABSI rate, human factors observations, and environmental microbiome sampling focusing on the equipment involved in the IV pump integration. We compared these findings to the CLABSI and BSI rates to identify temporal and geographic associations.Following the 2019 implementation of IV pump integration, statistically significant increases in CLABSI and BSI rates were observed. The enhanced safety checks added steps to IV medication administrations, with timestamp observation indicating up to 14 location changes around the bed spaces and a mean of 5.5 minutes for any IV medication administration. Environmental microbial sampling showed a 27% positivity rate. The highest microbial burden was found on patient-specific mobile equipment (30%) used during IV medication administration, including isolettes, IV hubs, and glove boxes, compared with other equipment (26%) like nursing computers or ventilators (p = 0.093). A strong overlap was observed between the microorganisms found in the NICU environment and those responsible for positive patient blood cultures, particularly coagulase-negative Staphylococcus (CONS).Though not statistically significant, the findings suggest that the added complexity and extended duration of the modified IV pump integration process may have increased the frequency of caregiver interactions with the NICU environment, exposing immune-vulnerable NICU patients to a higher risk of infection. Further human factors analysis and quality improvement efforts are necessary to simplify the IV medication administration process, reduce environmental microbial loads, and decrease infection rates. · Increased CLABSI/BSI rates post-IV pump integration.. · High microbial load on equipment related to the IV medication administration process.. · Process changes with IV pump integration to enhance patient safety may have unintended consequences, like increasing caregiver-environment interaction and patient infection rates..
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
20251 Articles
Published in last 50 years
Related Topics
Articles published on Integration Process
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
19965 Search results
Sort by Recency