The objective of this study was to explore the effects and related mechanisms of Roux-en-Y gastric bypass (RYGB) on insulin sensitivity in obese rats with type 2 diabetes mellitus (T2DM). The obese T2DM rat model was constructed by feeding a high-fat diet and injecting streptozotocin (STZ), and treated with RYGB. Grin3a shRNA was injected into the bilateral hypothalamic arcuate nucleus (ARC) to knockdown the Grin3a expression on T2DM rats. Eight weeks after operation, the body weight, fasting blood glucose (FBG), fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-IR), and plasma triglyceride (TG) levels were assessed. Hematoxylin & eosin (H&E) staining was adopted to observe the white adipose tissue (WAT) of rats. Western blot and qRT-PCR were used to detect the expression of Grin3a, adenosine 5' monophosphate-activated protein kinase (AMPK) and p-AMPK in ARC of rats. Later, the plasmid over-expressing or knocking down Grin3a was transfected into differentiated 3T3-L1 adipocytes, and the TG level and the formation of lipid droplets in adipocyte were assessed by TG kit and oil red O staining. The expression of lipogenic transcription factors in cells was detected by qRT-PCR. RYGB reduced FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats while increasing Grin3a expression and p-AMPK/AMPK ratio in ARC. Knockdown of Grin3a not only reversed the decrease of FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats induced by RYGB, but also reversed the up-regulation of p-AMPK/AMPK ratio in ARC affected by RYGB. Moreover, knocking down Grin3a significantly increased the TG level, promoted the formation of lipid droplets and up-regulated the expressions of lipogenic transcription factors in adipocytes. RYGB improved the insulin sensitivity, reduced the plasma TG level and lessens the fat accumulation in obese T2DM rats by regulating the Grin3a/AMPK signal in ARC.
Read full abstract