Purpose. To obtain relations determining the components of the total losses power with p-q-r power theory for three-phase four-wire energy supply systems, uniquely linking four components: the lowest possible losses power, losses power caused by the reactive power, losses power caused by the instantaneous active power pulsations, losses power caused by current flowing in the neutral wire. Methodology. We have applied concepts of p-q-r power theory, the theory of electrical circuits and mathematical simulation in Matlab package. Results. We have obtained the exact relation, which allows to calculate the total losses power in the three-phase four-wire energy supply system using three components corresponding to the projections of the generalized vectors of voltage and current along the pqr axis coordinates. Originality. For the first time, we have established a mathematical relationship between spatial representation of instantaneous values of the vector components and the total losses power in the three-phase four-wire energy supply systems. Practical value. We have elucidated an issue that using the proposed methodology would create a measuring device for determining the current value of the components of total losses power in three-phase systems. The device operates with measuring information about instantaneous values of currents and voltages.
Read full abstract