Nonhuman primates (NHPs) are important preclinical models for evaluating therapeutics because of their anatomophysiological similarities to humans, and can be especially useful for testing new delivery targets. With the growing promise of cell and gene therapies for the treatment of neurological diseases, it is important to ensure the accurate and safe delivery of these agents to target structures in the brain. However, a standard guideline or method has not been developed for stereotactic targeting in NHPs. In this article, we describe the safe use of a magnetic resonance imaging-guided frameless stereotactic system to target bilateral cerebellar dentate nuclei for accurate, real-time delivery of viral vector in NHPs. Seventeen rhesus macaques (Macaca mulatta) underwent stereotactic surgery under real-time MRI guidance using the ClearPoint® system. Bilateral cerebellar dentate nuclei were targeted through a single parietal entry point with a transtentorial approach. Fifty microliters of contrast-impregnated infusate was delivered to each dentate nucleus, and adjustments were made as necessary according to real-time MRI monitoring of delivery. Perioperative clinical outcomes and postoperative volumes of distribution were recorded. All macaques underwent bilateral surgery successfully. Superficial pin site infection occurred in 4/17 (23.5%) subjects, which resolved with antibiotics. Two episodes of transient neurological deficit (anisocoria and unilateral weakness) were recorded, which did not require additional postoperative treatment and resolved over time. Volume of distribution of infusate achieved satisfactory coverage of target dentate nuclei, and only 1 incidence (2.9%) of cerebrospinal fluid penetration was recorded. Mean volume of distribution was 161.22 ± 39.61 mm3 (left, 173.65 ± 48.29; right, 148.80 ± 23.98). MRI-guided frameless stereotactic injection of bilateral cerebellar dentate nuclei in NHPs is safe and feasible. The use of this technique enables real-time modification of the surgical plan to achieve adequate target coverage and can be readily translated to clinical use.
Read full abstract