IntroductionFluid resuscitation is the cornerstone of treatment in hemorrhagic shock. Despite increasing doubts, several guidelines recommend to maintain mean arterial pressure (MAP) >65 mmHg as the most frequent indication of fluid therapy. Our aim was to investigate the effects of a MAP-guided management in a bleeding-resuscitation animal experiment.Materials and methodsAfter anesthesia and instrumentation (tbsl) animals were bled till the initial stroke volume index dropped by 50% (t0). Fluid replacement was performed in 4 equivalent steps (t1-4) with balanced crystalloid solution to reach the baseline values of MAP. Invasive hemodynamic measurements and blood gas analyses were performed after each step.ResultsMean arterial pressure dropped from tbsl to t0 (114±11 vs 76.9±16.9 mmHg, p<0.001) and returned to baseline by t4 (101.4±14.4 mmHg). From tbsl-t0 stroke volume index (SVI), cardiac index (CI) decreased (SVI: 40±8.6 vs 19.3±3.6 ml/m2, p<0.001; CI: 3.4±0.3 vs 1.9±0.3 l/min/m2, p<0.001), pulse pressure variation (PPV) increased (13.2±4.3 vs 22.1±4.3%, p<0.001). There was a decrease in oxygen delivery (464±45 vs 246±26.9 ml/min, p<0.001), central venous oxygen saturation (82.8±5.4 vs 53.6±12.1%, p<0.001) and increase in lactate levels (1.6±0.4 vs 3.5±1.6 mmol/l, p<0.005). SVI, CI and PPV returned to their initial values by t2. To normalize MAP fluid therapy had to be continued till t4, with the total infused volume of 4.5±0.8 l.ConclusionIn the current experiment bleeding led to hemorrhagic shock, while MAP remained higher than 65 mmHg. Furthermore, MAP was unable to indicate the normalization of SVI, CI and PPV that resulted in unnecessary fluid administration. Our data give further evidence that MAP may be an inappropriate parameter to follow during fluid resuscitation.
Read full abstract