Lead (Pb) is one of the top metal pollutants worldwide, and its distribution between liquid and solid phases of soils is strongly controlled by its adsorption on minerals, organic matter, and their composites. This paper presented the effect of fulvic acid (FA) coexistence on the distribution of Pb(II) at the solid-liquid interface of four minerals, which provided reference for how to use humic substances to remove toxic Pb(II) in soils. The free Pb2+ of suspensions, measured by Pb ion selective electrode, was used to characterize the complexation of FA with Pb2+ at various pH. The adsorption isotherms of Pb(II) by montmorillonite, kaolinite, goethite, and gibbsite with and without FA were studied with batch experiments. Results indicated that the free Pb2+ decreased and complexed Pb(II) increased with the increase of FA concentration in Pb(II)-FA solutions, whether the initial concentration of Pb(II) was 0.1 or 1mM. Pb2+ hydrolysis was low and the free Pb2+ concentration in pure lead solution without FA was generally unchanged with increasing solution pH at pH < 6.0. But free Pb2+ decreased with the increase of pH in the presence of FA, suggesting that the complexation ability of FA with Pb2+ increased with the increase of solution pH. The adsorption of Pb(II) by the minerals without FA followed the order: montmorillonite > kaolinite ≈ goethite > gibbsite at pH5.0. The Pb(II) adsorption by montmorillonite and kaolinite significantly enhanced with 1g/L FA, while significantly inhibited with 3g/L FA at low initial Pb(II) concentration. However, the effect of FA on Pb(II) adsorption by montmorillonite was greater than that of kaolinite, which was mainly related to the crystal layer structure, adsorption area, and cation exchange capacity of the minerals. The Pb(II) adsorption by goethite and gibbsite was significantly enhanced by the addition of both 1g/L and 3g/L FA, and the enhancement was more evident in goethite system. The effect of FA on the distribution of Pb(II) between solid and liquid phases of the minerals was determined by the factors such as the initial concentration ratio of FA to Pb(II), the adsorption capacity of minerals for FA, and the number of soluble complexes of FA with Pb2+. Therefore, the distribution of FA between solid and liquid of four minerals affected the distribution of Pb(II) between solid and liquid phases of the minerals greatly. The results can provide an important reference for understanding the distribution of Pb(II) and the dynamics and mobility of active components in polluted soils.
Read full abstract