The initial mass function (IMF), describing the distribution of birth masses of stars, plays a pivotal role in establishing the observable properties of galaxies. This article reviews the evidence for variation in the IMF of massive early-type galaxies (ETGs), especially from spectroscopic studies and from dynamical and gravitational lensing measurements over the past decade. The principal conclusions are as follows: ▪ The spectra of massive ETGs depart from the predictions of models with Milky Way–like IMFs in a way that is best reproduced by assuming a steeper (bottom-heavy) IMF below ∼1 M⊙. ▪ Lensing and dynamical models, assuming a constant mass-to-light ratio for the stellar component, infer heavy IMFs, superficially supporting the result from spectra. ▪ The spectroscopic signal exhibits a steep gradient, however, and may be confined to the innermost region with scales ≲2 kpc; such internal variation in the stellar mass-to-light ratio would invalidate a key assumption of most dynamics and lensing studies. ▪ For masses above the main sequence turnoff in ancient populations (≳1 M⊙), there is little evidence for a steeper IMF in massive ETGs or their high-redshift progenitors; rather, a slightly shallower slope is preferred in this regime from several different arguments. ▪ Steep internal gradients may be responsible for some of the apparent discrepancies between different methods and also point to the cause of the IMF variation being restricted to conditions specific to the in situ formation phase of ETG cores.
Read full abstract