The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, is over expressed in renal cell carcinoma (RCC). However, the cell biology functions of RCC are not well understood. The present study aimed to verify the ability of CDKN3 to promote the proliferation and migration of RCC through in vitro experiments. Subsequently, the clinical prognostic effects were analyzed using The Cancer Genome Atlas (TCGA; https://www.cancer.gov/) and Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The chelators, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an analogue of the anti-tumor agent, were screened through bioinformatics analysis. The expression of CDKN3 is positively correlated with the IC50 of Dp44mT. In two RCC cell lines, 786-0 and Caki-1, we conducted small interfering RNA (siRNA) knockdown of CDKN3 and overexpression of CDKN3 by transfection plasmid. Subsequently, we administered Dp44mT to examine the resulting alterations in cell proliferation, migration, and apoptosis, thereby elucidating the role of CDKN3 and Dp44mT in these processes. The results of the experiment revealed a positive association between CDKN3 expression and the proliferation of RCC cell lines. Down-regulating CDKN3 significantly increased the apoptosis rate and inhibited cell migration in 786-0 and Caki-1 cells. Furthermore, bioinformatics analysis revealed a high expression of CDKN3 in RCC and a negative association between CDKN3 expression and survival. Gene set enrichment analysis (GSEA) revealed a significant association between high CDKN3 expression and the cell cycle pathway. Furthermore, we identified Dp44mT as a drug highly correlated with CDKN3 through the database. Subsequent addition of Dp44mT resulted in similar findings to those observed upon CDKN3 knockdown. Our findings have important implications for the diagnosis and treatment of CDKN3 in RCC. Additionally, Dp44mT is likely to be a promising candidate for future clinical applications.
Read full abstract