Porcine reproductive and respiratory syndrome virus (PRRSV) infects alveolar macrophages (AMϕ), causing dysregulated alpha interferon (IFN-α) and tumor necrosis factor alpha (TNF-α) production through a mechanism(s) yet to be resolved. Here, we show that AMϕ infected with PRRSV secreted a reduced quantity of IFN-α following exposure of the cell to synthetic double-stranded RNA (dsRNA). This reduction did not correlate with reduced IFNA1 gene transcription. Rather, it coincided with two events that occurred late during infection and that were indicative of translational attenuation, specifically, the activation of eukaryotic translation initiation factor 2α (eIF2α) and the appearance of stress granules. Notably, the typical rapid production of TNF-α by AMϕ exposed to lipopolysaccharide (LPS) was suppressed or enhanced by PRRSV, depending on when the LPS exposure occurred after virus infection. If exposure was delayed until 6 h postinfection (hpi) so that the development of the cytokine response coincided with the time in which phosphorylation of eIF2α by the stress sensor PERK (protein kinase RNA [PKR]-like ER kinase) occurred, inhibition of TNF-α production was observed. However, if LPS exposure occurred at 2 hpi, prior to a detectable onset of eIF2α phosphorylation, a synergistic response was observed due to the earlier NF-κB activation via the stress sensor IRE1α (inositol-requiring kinase 1α). These results suggest that the asynchronous actions of two branches of the unfolded protein response (UPR), namely, IRE1α, and PERK, activated by ER stress resulting from the virus infection, are associated with enhancement or suppression of TNF-α production, respectively.IMPORTANCE The activation of AMϕ is controlled by the microenvironment to deter excessive proinflammatory cytokine responses to microbes that could impair lung function. However, viral pneumonias frequently become complicated by secondary bacterial infections, triggering severe inflammation, lung dysfunction, and death. Although dysregulated cytokine production is considered an integral component of the exacerbated inflammatory response in viral-bacterial coinfections, the mechanism responsible for this event is unknown. Here, we show that PRRSV replication in porcine AMϕ triggers activation of the IRE1α branch of the UPR, which causes a synergistic TNF-α response to LPS exposure. Thus, the severe pneumonias typically observed in pigs afflicted with PRRSV-bacterial coinfections could result from dysregulated, overly robust TNF-α production in response to opportunistic pathogens that is not commensurate with the typical restrained reaction by uninfected AMϕ. This notion could help in the design of therapies to mitigate the severity of viral and bacterial coinfections.
Read full abstract