Aims. Interstellar dust (ISD) particles penetrate the heliosphere because of the relative motion of the local interstellar cloud and the Sun. The penetrated particles pass through the heliospheric interface, that is, the region in which solar wind and interstellar plasma interact. As a result, the ISD flow is modified after the passage through this region under the influence of electromagnetic force. The main goal of this work is to show how the heliospheric interface affects the distribution of ISD particles near the Sun. Methods. We have developed a Monte Carlo model of the ISD distribution in the heliosphere. It first takes the effects of the heliospheric interface and the rotating heliospheric current sheet into account. The effects of the heliospheric interface were probed using a global heliospheric model. Results. The computation results show that the heliospheric interface strongly influences the distribution of relatively small (radius a = 150 − 250 nm) astronomical silicates. The unexpected finding is that the heliospheric interface facilitates the penetration of a = 150 nm particles at small heliocentric distances and, particularly, to the Ulysses orbit (1 − 5 AU). We demonstrate that the deflection of ISD particles in the outer heliosheath is the principal mechanism that causes the effects of the heliospheric interface on the distribution near the Sun. The computations with different heliospheric models show that the distribution near the Sun is sensitive to the plasma parameters in the pristine local interstellar medium. Thus, we demonstrated that being measured near the Sun, the ISD may serve as a new independent diagnostics of the local interstellar medium and the heliospheric boundaries.
Read full abstract