The Okinawa rail is endemic to Okinawa Island and is categorized as an endangered animal. In this study, we focused on innate immunity because it is the first line of host defense. In particular, signals recognizing foreign RNA (e.g., viruses) are important for host defense because they activate the host immune system. The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) families (RIG-I, MDA5, and LGP2) are sensors that activate innate immunity. Therefore, we analyzed these functions in the Okinawa rail using genomic and cellular analyses of fibroblasts. Fibroblasts can be obtained from dead individuals, allowing these cells to be obtained from dead individuals, which is particularly useful for endangered species. The MDA5 gene of Okinawa rail was sequenced using the Sanger method following PCR amplification and extraction of the amplified sequence from agarose gel. Additionally, mRNA expression analysis of cultured fibroblasts exposed to poly I:C was done. The MDA5 gene was found to be a mutated nonfunctional gene in the Okinawa rail. The mRNA expression rates of inflammatory cytokine genes type I IFN, and Mx1 were slower in Okinawa rail than in chicken cultured fibroblasts. Similar to the mRNA expression results, cell number and live cell ratio also slowly decreased in the Okinawa rail compared with chicken cultured fibroblasts, indicating that the innate immune reaction differs between chicken and the Okinawa rail. To the best of our knowledge, this is the first experimental evaluation of the loss of function of the Okinawa rail innate immune genes. In conclusion, our results provide a basis for conservation strategies for the endangered Okinawa rail.
Read full abstract