Graft-versus-host disease (GVHD) is a life-threatening complication of human allogeneic haematopoietic stem cell transplantation. Non-obese diabetic (NOD)-scid IL2rγ(null) (NSG) mice injected with human peripheral blood mononuclear cells (PBMC) engraft at high levels and develop a robust xenogeneic (xeno)-GVHD, which reproduces many aspects of the clinical disease. Here we show that enriched and purified human CD4 T cells engraft readily in NSG mice and mediate xeno-GVHD, although with slower kinetics compared to injection of whole PBMC. Moreover, purified human CD4 T cells engraft but do not induce a GVHD in NSG mice that lack murine MHC class II (NSG-H2-Ab1(tm1Gru), NSG-Ab°), demonstrating the importance of murine major histocompatibility complex (MHC) class II in the CD4-mediated xeno-response. Injection of purified human CD4 T cells from a DR4-negative donor into a newly developed NSG mouse strain that expresses human leucocyte antigen D-related 4 (HLA-DR4) but not murine class II (NSG-Ab° DR4) induces an allogeneic GVHD characterized by weight loss, fur loss, infiltration of human cells in skin, lung and liver and a high level of mortality. The ability of human CD4 T cells to mediate an allo-GVHD in NSG-Ab° DR4 mice suggests that this model will be useful to investigate acute allo-GVHD pathogenesis and to evaluate human specific therapies.
Read full abstract