The scope of fruit and vegetable biomechanics is reviewed. Sources of mechanical injury to produce in harvesting, processing, storage, packaging and transportation are briefly described. A survey of produce handling and transportation environments was conducted, whereby an envelope model encompassing composite spectra of trucks, railroad, marine and cargo aircraft is presented. The protective quality, i.e. strength of shipping containers is quantified in static and dynamic loading such as encountered in storage, handling and transportation. Mechanical response of fruits and vegetables in quasistatic and dynamic loading are formulated by a nonlinear rheological model, whereby a time and deformation dependent relaxation modulus is defined. A realistic link is established between the model and real fruits and vegetables by test procedures for determination of the parameters in the governing nonlinear equations. Based on the nonlinear relaxation modulus, mechanical damage of fruits and vegetables is quantified for static compression, transients and vibration loading as well as for combined static and dynamic loading, by equations of contact circle diameter, bruise depth and contact pressure. Distribution of loads over a maximal number of contact points per fruit is linked to geometrical patterns of produce packs. The application of Shock Damage Boundary techniques for produce-package testing is described along with a case study comparing the protective qualities of two types of apple packs. Produce damage quantification by direct fruit inspection in terms of a ‘Bruise Index’ is described, including a practival example, comparing the protective qualities of three types of apple packs in shipping tests. Indirect methods of mechanical injury evaluation, based on weight loss and CO 2 emission differences between bruised and wholesome fruits are also briefly discussed.
Read full abstract