PurposeThis study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging from equities, commodities, real estate, currencies and bonds.Design/methodology/approachIt used a multivariate factor stochastic volatility model to capture the dynamic changes in covariance and volatility correlation, thus offering empirical insights into the co-volatility dynamics. Unlike conventional research on price or return transmission, this study directly models the time-varying covariance and volatility correlation.FindingsThe study uncovers pronounced co-volatility movements between cryptocurrencies and specific indices such as GSCI Energy, GSCI Commodity, Dow Jones 1 month forward and U.S. 10-year TIPS. Notably, these movements surpass those observed with precious metals, industrial metals and global equity indices across various regions. Interestingly, except for Japan, equity indices in the USA, Canada, Australia, France, Germany, India and China exhibit a co-volatility movement. These findings challenge the existing literature on cryptocurrencies and provide intriguing evidence regarding their co-volatility dynamics.OriginalityThis study significantly contributes to applying asset pricing models in cryptocurrency markets by explicitly addressing price and volatility dynamics aspects. Using the stochastic volatility model, the research adding methodological contribution effectively captures cryptocurrency volatility's inherent fluctuations and time-varying nature. While previous literature has primarily focused on bitcoin and a few other cryptocurrencies, this study examines the stochastic volatility properties of a wide range of cryptocurrency indices. Furthermore, the study expands its scope by examining global asset markets, allowing for a comprehensive analysis considering the broader context in which cryptocurrencies operate. It bridges the gap between traditional asset pricing models and the unique characteristics of cryptocurrencies.
Read full abstract