Orthogonal frequency division multiplexing with index modulation (OFDM-IM), which transmits information bits through ordinary constellation symbols and indices of active subcarriers, is a promising multicarrier transmission scheme and has attracted the attention of researchers due to numerous benefits such as flexibility and simplicity. Nonetheless, OFDM-IM cannot satisfy the needs of future wireless communication services such as superior reliability, high data rates, and low complexity. In this article, we propose a novel OFDM-IM scheme named coordinate interleaved OFDM with repeated in-phase/quadrature IM (CI-OFDM-RIQIM), which provides superior error performance and enhanced spectral efficiency due to its diversity order of two and clever subcarrier activation pattern (SAP) detection mechanism, respectively. In addition, CI-OFDM-RIQIM is further extended to coordinate interleaved OFDM with in-phase/quadrature IM (CI-OFDM-IQIM) by doubling information bits transmitted by IM. Furthermore, log-likelihood ratio (LLR) based low-complexity detectors are designed for both proposed schemes. Theoretical analyses are performed and an upper bound on the bit error probability is derived. Comprehensive computer simulations under perfect and imperfect channel state information (CSI), are conducted to compare the proposed and reference schemes. It is shown that CI-OFDM-RIQIM and CI-OFDM-IQIM show superior results and can be considered promising candidates for next-generation wireless communication systems.
Read full abstract