Virgin coconut oil (VCO) is claimed to have various health benefits, but favorable effects of its major component (∼50%), lauric acid, are controversial. Therefore, we aimed to reduce lauric acid content (∼30%) in VCO and evaluate its effect compared to VCO and medium-chain triglycerides (MCT), on food intake, bodyweight (BW), lipid profiles, and hepatic histology. Female C57BL/6 mice were treated with different diets for 3 months: control (normal diet), high-fat diet (HF), HF+VCO, HF+MCT, HF+low lauric acid VCO (LLA), and normal diet+LLA (C+LLA). LLA was prepared by enzymatic interesterification of VCO with methyl octanoate (methyl caprylate) and methyl decanoate (methyl caprate). Plasma and liver lipids, including total cholesterol (TC), high-density lipoprotein (HDL), and triglyceride, were measured by colorimetric assay, and hepatic fat accumulation was examined by oil-red-O staining. HF mice exhibited high plasma and liver TC and low-density lipoprotein (LDL). VCO or MCT treatment lowered liver TC and LDL, whereas LLA increased plasma HDL and markedly improved TC:HDL ratio. The HF-induced hepatic fat accumulation was attenuated by all treatments, of which VCO was the most effective. Control mice administered with LLA demonstrated lower liver TC and LDL, but higher plasma TC and HDL compared to controls. Lowest BW gain and food intake were found in mice treated with LLA. In conclusion, VCO, MCT, and LLA ameliorated hepatic histopathology caused by HF. VCO and MCT improved liver lipid profiles, whereas LLA has more beneficial effect on plasma lipids via a better TC:HDL ratio and showed promise for BW control.
Read full abstract