Wood, as a natural and renewable resource, plays a crucial role in industrial production and daily life. Lignin, as one of the three major components of the plant cell secondary wall, plays a key role in conferring mechanical strength and enhancing stress resistance. The caffeic acid-O-methyltransferase (COMT) family of oxygen-methyltransferases is a core regulatory node in the downstream pathway of lignin biosynthesis. Here, our report shows that caffeic acid-O-methyltransferase 2 (COMT2) exhibits high conservation across several species. Tissue expression analysis reveals that COMT2 is specifically highly expressed in the secondary xylem of Populus tomentosa stems. We demonstrated that the specific overexpression of COMT2 in fiber cells of Populus tomentosa led to a significant increase in plant height, stem diameter, internode number, and stem dry weight. Furthermore, we found that the specific overexpression of COMT2 in fiber cells promotes xylem differentiation, lignin accumulation, and the thickening of the secondary cell wall (SCW) in fiber cells. Our results indicate that key downstream lignin biosynthesis enzyme genes are upregulated in transgenic plants. Additionally, mechanical properties of stem bending resistance, puncture resistance, and compressive strength in the transgenic lines are significantly improved. Moreover, we further created the DUFpro:COMT2 transgenic lines of Populus deltoides × Populus. euramericana cv ‘Nanlin895’ to verify the functional conservation of COMT2 in closely related poplar species. The DUFpro:COMT2 Populus deltoides × Populus. euramericana cv ‘Nanlin895’ transgenic lines exhibited phenotypes similar to those observed in the P. tomentosa transgenic plants, which showed enhanced growth, increased lignin accumulation, and greater wood strength. Overall, the specific overexpression of the caffeic acid O-methyltransferase gene COMT2 in poplar stem fiber cells has enhanced the wood biomass, wood properties, and mechanical strength of poplar stems.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
12895 Articles
Published in last 50 years
Articles published on Increase In Diameter
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
12763 Search results
Sort by Recency