Ceramic matrix composites (CMCs) provide several benefits over metal blades including weight and increased temperature capability, and have the potential for increased engine performance by reduction of the cooling flow bled from the compressor and by allowing engines to run at higher turbine inlet temperatures. These CMC blades must be capable of surviving fatigue (high cycle and low cycle), creep, impact, and any tip rub events due to the engine missions or maneuvers that temporarily close blade tip/shroud clearances. As part of a cooperative research program between GE Aviation and the Ohio State University Gas Turbine Laboratory, OSU GTL, the response of a CMC stage 1 low-pressure turbine blade has been compared with the response of an equivalent metal turbine blade using the OSU GTL large spin-pit facility (LSPF) as the test vehicle. Load cells mounted on the casing wall, strain gages mounted on the airfoils, and other instrumentation are used to assess blade tip rub interactions with a 120-deg sector of a representative turbine stationary casing. The intent of this paper is to present the dynamic response of both the CMC and the metal blades with the turbine disk operating at design speed and with representative incursion rates and depths. Casing wear and blade tip wear are both characterized for several types of rub conditions including a light, medium, and heavy rub at room temperature. For each condition, the rub primary dynamic modes have been evaluated, and the corresponding blade tip loads have been calculated. The preliminary results suggest that a CMC blade has similar abilities to a metal blade during a rub event.
Read full abstract