BackgroundEndoplasmic reticulum (ER) stress plays an important role in mediating ischemic heart cell death. The aim of this study was to investigate whether manipulation of a key factor of the ER stress pathway, eukaryotic translation initiation factor 2 subunit α (eIF2α), can change the natural history of heart failure (HF). MethodsHF was induced using coronary artery ligation in adult rats and a selective eIF2α dephosphorylation inhibitor, salubrinal (Sal), was used. Thirty minutes after ligation, rats were randomly assigned to 3 groups: myocardial infarction (MI) plus placebo injections (dimethyl sulfoxide; n = 12), MI plus Sal injection (Sal; n = 12), and MI (HF; n = 12). Hemodynamic parameters were examined. Hearts were harvested for apoptosis assessment after 8 weeks of Sal treatment by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labelling and flow cytometric analysis. Hearts were harvested to determine ER chaperones by Western analysis, real-time polymerase chain reaction and immunohistochemical analysis. ResultsCardiac function was significantly improved in Sal-treated rats. Apoptosis was reduced by Sal treatment. Glucose-regulated protein-78 and -94 were increased in HF but normalized by Sal treatment. HF caused a significant increase in eIF2α phosphorylation, which was further increased by Sal treatment, and caspase-12 and phospho-c-JUN NH2-terminal kinase were markedly increased in rats with HF alone but significantly reduced by Sal treatment. ConclusionsOur results suggest that reduction of ER stress and myocardial apoptosis through inhibition of eIF2α dephosphorylation might alter the natural history of HF, which might provide a new approach for its treatment.
Read full abstract