The synergistic effect of sequential exposure to ozone followed by free chlorine on inactivation of Cryptosporidium parvum oocysts suspended in natural waters was studied in bench-scale batch reactors. Animal infectivity using neonatal CD-1 mice was used to measure oocyst inactivation. The synergistic effect measured in two alkaline (pH 8.1) natural waters was statistically significant but was considerably smaller than previously reported in buffered de-ionized water at pH 6.0. Temperature, ozone primary treatment level, and water type did not have measurable impacts on the synergistic effect. Efforts to increase the synergistic effect by reducing the pH from 8 to 6 by acid addition were unsuccessful. In the two low alkalinity (pH 6.0) natural waters tested, the measured synergistic effect was greater than in the alkaline waters, but was still less than that measured previously in buffered de-ionized water. It was concluded that the synergistic effect reduction in the natural waters tested was due in part to alkalinity and in part to other unidentified water quality characteristics. Sequential treatment with ozone followed by free chlorine may only be a feasible strategy for achieving synergistic C. parvum inactivation credit for water treatment facilities with natural waters having a low pH (near 6.0).
Read full abstract