Deep learning methods are widely used in the field of rolling bearing fault diagnosis and produce good results when faced with datasets with roughly equal numbers of normal and faulty samples. However, real-world data often has a serious imbalance, with the number of fault samples being significantly less than the number of normal samples. This dataset imbalance challenges the performance of traditional deep learning methods. To address this problem, this paper proposes an efficient imbalanced data rolling bearing fault diagnosis method. The method consists of two parts: a deep learning network based on a multi-scale self-attention mechanism and a novel loss function. In terms of the deep learning network, firstly, the one-dimensional vibration signal is converted into a two-dimensional image through the Gramian angular field. This conversion maximises the inherent feature extraction capability of the network. Subsequently, the multi-scale learning capability of the network is enhanced by implementing different expansion rates for the head of the multi-scale self-attention mechanism. This nuanced approach allows the network to capture the underlying information more efficiently. Finally, the inclusion of Ghost bottlenecks and feature pyramid networks (FPNs) helps to optimise network efficiency and improve generalisation performance. A novel loss function is also proposed to make the method more suitable for imbalanced data. During the training process, the classification of samples in each class is analysed using the recall metric of imbalanced classification and the real-time recall is used as a weight to weaken the dominance of the majority class. This weighting ensures the adaptability of the method to imbalanced datasets. The proposed method is evaluated using rolling bearing datasets from Case Western Reserve University, USA, and Southeast University, China. Comparison results with other state-of-the-art deep learning methods show that the proposed method has a robust performance when dealing with imbalanced data.
Read full abstract