In this study, we proposed a dynamic inventory database to evaluate chronic internal exposure to chemicals at a population level, which enables users to perform modeling exercises specific to a particular chemical, route of exposure, age group, and gender. The database was built based on the steady-state solution of physiologically based kinetic (PBK) models. The biotransfer factors [BTF, the steady-state ratio between the chemical concentration in human tissues and the average daily dose (ADD) of the chemical] of 931 organic chemicals in major organs and tissues were simulated for a total of 14 population age groups for males and females. The results indicated that infants and children had the highest simulated BTFs of chemicals, and middle-aged adults had the lowest simulated BTFs. The route-specific analysis of the simulated BTFs indicated that the biotransformation half-life and octanol-water partition coefficient of chemicals had a profound impact on the BTFs. Organ- and chemical-specific results indicated that the biotransfer potential of chemicals in human bodies was primarily determined by bio-thermodynamic variables (e.g., lipid contents). In conclusion, the proposed inventory database can be conveniently used to access chronic internal exposure doses of chemicals by multiplying the route-specific ADD values for different population groups. In future studies, we recommend incorporating human biotransformation data, partition coefficients of ionizable chemicals, age-specific vulnerable indicators (e.g., the degree of maturation of immune systems), physiological variations within the same age group (e.g., intensity of daily physical activities), growth rates (i.e., the dilution effect on chemical biotransfer), and all possible target organs of carcinogenicity (e.g., bladder) into the proposed dynamic inventory database to help promote human exposome research.
Read full abstract