We report the development of a peptide-based optical nanoprobe specifically tailored for prostate cancer imaging. The imaging probe is comprised of cyclic peptide nanotubes, formed via the aqueous co-assembly of four cyclic D,L-alternating octapeptides. The inherent properties of these cyclic building blocks have been carefully selected to enhance their efficacy in imaging applications, through the addition of a cancer targeting peptide and a fluorescent dye. Comprehensive characterization using scanning electron microscopy (FESEM) and low-voltage transmission electron microscopy (LV-TEM) confirms the formation of nanotubes through co-assembly of the cyclic peptides. The resulting nanotubes show an average diameter of 28 nm. Circular dichroism (CD) spectroscopy validates the formation of stable beta-sheet hydrogen bonding structures at both 20 and 37 °C, ensuring their suitability for biomedical applications. Evaluation of PSMA-binding specificity of the resulting peptide nanotubes is assessed using confocal fluorescence microscopy demonstrating receptor-mediated uptake in prostate cancer cells. We anticipate this strategy will provide the basis for the utilization of co-assembled systems for advancing molecular imaging techniques in prostate cancer and other cancers.
Read full abstract