Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA). We analyzed DNA methylation (5mC) and histone modifications (H3K14 acetylation and H3K9 trimethylation) in MPS IIIB and MPS IVA patients’ fibroblasts and healthy controls. The findings revealed that global DNA hypomethylation is present in cell lines for both diseases. At the same time, histone acetylation was increased in MPS IIIB and MPS IVA cells in a donor-dependent way, further indicating a shift towards relaxed open chromatin in these MPS. Finally, the constitutive heterochromatin marker, histone H3K9 trimethylation, only showed reduced clustering in MPS IIIB cells, suggesting limited alterations in heterochromatin organization. These findings collectively emphasize the significance of epigenetic mechanisms in modulating the phenotypic variations observed in LSDs. While global DNA hypomethylation could contribute to the MPS pathogenesis, the study also highlights individual-specific epigenetic responses that might contribute to phenotypic heterogeneity. Further research into the specific genes and pathways affected by these epigenetic changes could provide insights into potential therapeutic interventions for these MPS and other LSDs.
Read full abstract