Dispersion in spatio-temporal random flows is dominated by the competition between spatial and temporal velocity resets along particle paths. This competition admits a range of normal and anomalous dispersion behaviours characterised by the Kubo number, which compares the relative strength of spatial and temporal velocity resets. To shed light on these behaviours, we develop a Lagrangian stochastic approach for particle motion in spatio-temporally fluctuating flow fields. For space–time separable flows, particle motion is mapped onto a continuous time random walk (CTRW) for steady flow in warped time, which enables the upscaling and prediction of the large-scale dispersion behaviour. For non-separable flows, we measure Lagrangian velocities in terms of a new sampling variable, the average number of velocity transitions (both temporal and spatial) along pathlines, which renders the velocity series Markovian. Based on this, we derive a Lagrangian stochastic model that represents particle motion as a coupled space–time random walk, that is, a CTRW for which the space and time increments are intrinsically coupled. This approach sheds light on the fundamental mechanisms of particle motion in space–time variable flows, and allows for its systematic quantification. Furthermore, these results indicate that alternative strategies for the analysis of Lagrangian velocity data using new sampling variables may facilitate the identification of (hidden) Markov models, and enable the development of reduced-order models for otherwise complex particle dynamics.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
18827 Articles
Published in last 50 years
Articles published on Model Identification
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
18305 Search results
Sort by Recency