The lattice-based multi-identity fully homomorphic encryption scheme combines the quantum security of lattice cryptography with the advantage of identity-based encryption. However, existing schemes face challenges such as large key sizes, inefficient ciphertext expansion processes, and reliance on outdated trapdoor designs, limiting their compactness and practicality. In this study, we propose a novel Compact Multi-Identity Fully Homomorphic Encryption Scheme (WZ-MIBFHE) that eliminates the need for fresh ciphertexts during expansion. First, we construct a compact identity-based encryption scheme by combining the YJW23 trapdoor and ABB10 under the standard model, proving its IND-sID-CPA security. The scheme is then adapted to ensure correctness and security when integrated with the decomposition method for ciphertext expansion. This adaptation also utilizes approximation errors to reduce overall noise. Finally, we expand the modified IBE scheme’s ciphertext using the decomposition method to construct the WZ-MIBFHE scheme. Compared to existing methods, WZ-MIBFHE reduces the lattice dimension to nlogq+logbq, improves public and private key sizes, and significantly lowers ciphertext expansion rates by removing the need for fresh ciphertexts. These improvements enhance both the compactness and efficiency of the scheme, making it a promising solution for multi-identity homomorphic encryption.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
300 Articles
Published in last 50 years
Related Topics
Articles published on Identity-based Encryption Scheme
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
298 Search results
Sort by Recency