Wound size measurement is an important indicator of wound healing. Nurses measure wound size in terms of length × width in wound healing assessment, but it is easy to overestimate the extent of the wound due to irregularities around it. Using hyperspectral imaging (HIS) to measure the area of a pressure injury could provide more accurate data than manual measurement, ensure that the same tool is used for standardized assessment of wounds, and reduce the measurement time. This study was a pilot cross-sectional study, and a total of 30 patients with coccyx sacral pressure injuries were recruited to the rehabilitation ward after approval by the human subjects research committee. We used hyperspectral images to collect pressure injury images and machine learning (k-means) to automatically classify wound areas in combination with the length × width rule (LW rule) and image morphology algorithm for wound judgment and area calculation. The results calculated from the data were compared with the calculations made by the nursing staff using the length × width rule. The use of hyperspectral images, machine learning, the length × width rule (LW rule), and an image morphology algorithm to calculate the wound area yielded more accurate measurements than did nurses, effectively reduced the chance of human error, reduced the measurement time, and produced real-time data. HIS can be used by nursing staff to assess wounds with a standardized approach so as to ensure that proper wound care can be provided.
Read full abstract