In this paper, a family of first-order hyperbolic integro-differential equations introduced to model the decomposition of organic matter (OM) are studied. These original equations depend on an extra variable named “quality”. We prove that these equations admit solutions in particular Banach spaces ensuring the continuity and the N N -order closure of equations ( N ∈ N ∗ N\in \mathbb {N}^* ) according to “quality”. We first give a result of existence, uniqueness and smoothness in a general framework. Then, this result is applied to specific transport equations. Finally, a numerical illustration of solutions properties is given by using an implicit-explicit finite difference scheme.
Read full abstract