This study adopted the method of quantitative proteomics to analyze the adsorbed proteins in oil-in-water emulsions stabilized by pea protein isolate (PPI). Adsorbed proteins were precipitated by an optimized precipitation method and precipitates were labeled and subjected to a reversed-phase high performance liquid chromatography coupled to tandem mass spectrometry (RPLC-ESI-MS/MS) for protein identification and quantification. In total, 77 proteins were identified, of which 49 proteins with significant differences were observed. There were 25 upregulated proteins (fold change > 1) and 24 downregulated proteins (fold change < 1). The interfacial adsorption abilities of these proteins were compared according to the classification of protein families. The results showed that all isoforms of vicilins exhibited high adsorption abilities at the oil-water interface. Compared with vicilin, convicilin showed opposite adsorption capacity. Different legumin families showed significantly different affinities on the oil-water interface. In contrast to albumin-1, albumin-2 was preferentially adsorbed to the interface. The amino acid sequence alignment and hydropathy profile analysis of these proteins showed that the proteins well-balanced between hydrophobic and hydrophilic amino acid groups displayed high interfacial activity. In contrast, a long hydrophilic or hydrophobic fragment could adversely influence protein interfacial activity. This study provides an insight into the interfacial behaviors of proteins by supplying detailed quantitative information of interfacial layer.
Read full abstract