Extreme weather events from climate change challenge infrastructure stability. While water-related engineering enhances disaster resilience, it also impacts ecosystems. Taiwan has implemented Ecological Check and Identification (ECI) since 2003, yet challenges remain in standards, resource allocation, and effectiveness. This study analyzes 35 coastal engineering cases and participated in two engineering projects from five key perspectives. The results show that there are regional differences in the types of projects implemented for ECI. Landscape engineering was the main type in northern Taiwan (31%), water resource engineering was the main type in southern Taiwan (43%), and no cases were found in eastern Taiwan. Most inspections occur in the proposal (24%), planning (22%), and design (22%) stages, with limited post-construction monitoring (14%). Furthermore, ecological assessments were lacking in 49% of cases, and aquatic ecosystems were underrepresented. Inconsistent inspection formats and low species documentation (57% of cases) reduce data comparability and conservation effectiveness. To address these gaps, some recommendations were made, including standardizing inspections, integrating Sustainable Development Goals (SDGs), promoting low-carbon approaches, strengthening public participation, and establishing long-term monitoring. The findings provide policy insights to enhance ECI, supporting sustainable coastal engineering while balancing infrastructure benefits and environmental conservation.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
8585 Articles
Published in last 50 years
Articles published on Hydrological
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
8499 Search results
Sort by Recency