Numerical and experimental methods are used to solve a multidisciplinary problem on determining the stress state of a steel shell of revolution under mechanical loading and thermal effect with allowance for its contact with a hydrogen-containing medium. The study uses a well-developed mathematical tool for solving heat conduction problems in order to solve the problem of hydrogen diffusion into metal. The effective stresses and their invariants are determined by solving the nonlinear boundary value problem of thermoplasticity of a thick-walled shell of revolution in a three-dimensional formulation. The study takes into account the experimentally found effect of changes in the mechanical properties of steel affected by hydrogen. The correctness of the proposed method and the performed calculations is quantitatively estimated by comparison with a well-known problem having an analytical solution. The paper shows that it is possible and necessary to take into account the change in mechanical properties when determining the stress state of steel structures operating in contact with a hydrogen-containing medium.
Read full abstract