In this study, we hypothesized and tested that physical parameters (flow, transport, and water depth) have a significantly greater influence on phosphorus (P) retention in wetlands than biogeochemical factors. Specifically, we evaluated the null hypothesis (H0), that no significant difference exists between the influence of physical and biogeochemical parameters on phosphorus retention, against the alternative hypothesis (H1), that physical parameters are more influential. We investigated two large wetlands (stormwater treatment areas, STAs) in south Florida: STA34C2A, which is dominated by emergent aquatic vegetation (EAV), and STA2C3, which is dominated by submerged aquatic vegetation (SAV). Building on Part 1, which mapped spatial flow resistance (K) as a vegetation-type-independent proxy for hydraulic resistance, this study (Part 2) applied a novel high-frequency (hourly) data approach with time-lagged regression modeling to estimate total phosphorus (TP) outflow concentrations. The key variables included inflow TP concentration, vegetation volume, water depth, nominal hydraulic residence time (HRT), hydraulic loading rate (HLR), phosphorus loading rate (PLR), and time lag (“P-spiral”). Multi-linear regression models for each STA identified inflow TP and water depth, a controllable physical parameter, as the most significant predictors of TP outflow, while the hour of day (a temporal proxy) contributed the least. Optimal model performance occurred with lag times of 8 and 9 days, producing R2 values of 0.5788 (STA34C2A) and 0.5354 (STA2C3). In STA34C2A, high TP retention was linked to shallow water depth, dense EAV, and low K values, indicating high hydraulic resistance and reduced short circuiting. In contrast, lower TP retention in STA2C3 was associated with longer flow paths, sparse SAV, and high K values, suggesting less hydraulic control despite similar nominal HRTs. These results provide empirical support for rejecting the null hypothesis (H0) in favor of the alternative (H1): physical parameters, especially water depth, hydraulic resistance, and inflow dynamics, consistently exert a stronger influence on P removal than biogeochemical factors such as PLR. The findings highlight the importance of optimizing flow and depth controls in wetland design and management to enhance phosphorus removal efficiency in large, constructed wetland systems.
Read full abstract