Growing evidence strongly indicates pivotal roles of gender differences in the occurrence and survival rate of patients with bladder cancer, with a higher incidence in males and poorer prognosis in females. Nevertheless, the molecular basis underlying gender-specific differences in bladder cancer remains unknown. The current study has tried to detect key genes contributing to gender differences in bladder cancer patients. The gene expression profile of GSE13507 was firstly obtained from the Gene Expression Omnibus (GEO) database. Further, differentially expressed genes (DEGs) were screened between males and females using R software. Protein-protein interactive (PPI) network analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Kaplan-Meier survival analyses were also performed. We detected six hub genes contributing to gender differences in bladder cancer patients, containing IGF2, CCL5, ASPM, CDC20, BUB1B, and CCNB1. Our analyses demonstrated that CCNB1 and BUB1B were upregulated in tumor tissues of female subjects with bladder cancer. Other genes, such as IGF2 and CCL5, were associated with a poor outcome in male patients with bladder cancer. Additionally, three signaling pathways (focal adhesion, rheumatoid arthritis, and human T-cell leukemia virus infection) were identified to be differentially downregulated in bladder cancer versus normal samples in both genders. Our findings suggested that gender differences may modulate the expression of key genes that contributed to bladder cancer occurrence and prognosis.
Read full abstract