Skin primarily comprises a collagen-rich extracellular matrix (ECM) that provides structural and functional support to the skin. Aging causes progressive loss and fragmentation of dermal collagen fibrils, leading to thin and weakened skin (Dermal aging). We previously reported that CCN1 is elevated in naturally aged human skin, photoaged human skin, and acute UV-irradiated human skin dermal fibroblasts in vivo. Elevated CCN1 alters the expression of numerous secreted proteins that have deleterious effects on the dermal microenvironment, impairing the structural integrity and function of the skin. Here we show that CCN1 is predominantly elevated in the human skin dermis by UV irradiation and accumulated in the dermal extracellular matrix. Laser capture microdissection indicated that CCN1 is predominantly induced in the dermis, not in the epidermis, by acute UV irradiation in human skin in vivo. Interestingly, while UV-induced CCN1 in the dermal fibroblasts and in the medium is transient, secreted CCN1 accumulates in the ECM. We explored the functionality of the matrix-bound CCN1 by culturing dermal fibroblasts on an acellular matrix plate that was enriched with a high concentration of CCN1. We observed that matrix-bound CCN1 activates integrin outside-in signaling resulting in the activation of FAK and its downstream target paxillin and ERK, as well as elevated MMP-1 and inhibition of collagen, in human dermal fibroblasts. These data suggest that accumulation of CCN1 in the dermal ECM is expected to progressively promote the aging of the dermis and thereby negatively impact the function of the dermis.
Read full abstract