Astrocytes regulate the activity of neighboring neurons by releasing chemical transmitters, including ATP. Adenosine levels in the cerebrospinal fluid of mice that express a mutant human glial fibrillary acidic protein in astrocytes are slightly elevated compared to those in wild type mice and this might result from the observed increased release by mutant astrocytes of ATP, which can be used to produce adenosine. Using hippocampal slices from these mutant mice, we examined whether the increased endogenous adenosine levels in the hippocampus modulate the reversal of long-term potentiation (LTP), i.e. depotentiation (DP), in CA1 neurons. In hippocampal slices from wild type mice, a stable LTP was induced by tetanic stimulation consisting of 100 pulses at 100Hz, and this was reversed by a train of low frequency stimulation (LFS) of 500 pulses at 1Hz applied 30min later. This induction of DP was inhibited by application of either 100nM adenosine or 0.5nM N6-cyclopentyladenosine, an adenosine A1 receptor agonist, during LFS, indicating that the increase in extracellular adenosine levels attenuated DP induction by acting on adenosine A1 receptors. In contrast, although a stable LTP was also induced in hippocampal slices from mutant mice, induction of DP was inhibited, but DP could be induced by application, during LFS, of 50nM 8-cyclopentyltheophylline, an adenosine A1 receptor antagonist. These results suggest that a small increase in extracellular adenosine levels resulting from increased ATP release by astrocytes results in attenuation of DP in hippocampal CA1 neurons in the mutant mice.
Read full abstract