Ligand-induced tyrosine phosphorylation of the human colony-stimulating factor 1 receptor (CSF-1R) could involve either an intra- or intermolecular mechanism. We therefore examined the ability of a CSF-1R carboxy-terminal truncation mutant to phosphorylate a kinase-defective receptor, CSF-1R[met 616], that contains a methionine-for-lysine substitution at its ATP-binding site. By using an antipeptide serum that specifically reacts with epitopes deleted from the enzymatically competent truncation mutant, cross-phosphorylation of CSF-1R[met 616] on tyrosine was demonstrated, both in immune-complex kinase reactions and in intact cells stimulated with CSF-1. Both in vitro and in vivo, CSF-1R[met 616] was phosphorylated on tryptic peptides identical to those derived from wild-type CSF-1R, suggesting that receptor phosphorylation on tyrosine can proceed via an intermolecular interaction between receptor monomers. When expressed alone, CSF-1R[met 616] did not undergo ligand-induced down modulation, but its phosphorylation in cells coexpressing the kinase-active truncation mutant accelerated its degradation.
Read full abstract