Gall-forming insects induce various types of galls on their host plants by altering gene expression in host plant organs, and recent studies have been conducted for gene expression in galls. However, the evolutionary trajectories of gene expression patterns and the resulting phenotypes have not yet been studied using multiple related species. We investigated the speciation and the diversification process of galls induced by four closely related aphid species (Hormaphidini) on a host plant species (Hamamelis japonica) by examining the phylogenetic congruence between the geographical divergences of aphids and the host plant, and by comparing their gene expression patterns and resulting phenotypes. Phylogenetic analysis of aphids and the host plant showed that geographical isolation among host plant populations has interrupted gene flow in aphids and accelerated the speciation process. The concentration of phenolics and the complexity of the internal structure of galls were correlated with the expression levels of genes for the biosynthesis of phenolics and morphogenesis respectively. These results suggest that the expression levels of genes for the biosynthesis of phenolics and morphogenesis have evolutionarily increased in galls accelerated by the speciation process of aphids due to the distribution change of the host plant, leading to the related phenotypic evolution. Our study showed the evolutionary process of phenotypic traits in galls in the wild from both gene expression and actual phenotype levels.
Read full abstract