Theoretical design and experimental fabrication of highly efficient single-atom catalysts (SACs) containing isolated metal atoms monodispersed on appropriate substrates have surged to the forefront of heterogeneous catalysis in recent years. Nevertheless, the instability of SACs, i.e., preferential clustering in chemical reaction processes, dramatically hinders their practical applications. In this paper, using first-principles calculations, we predict that a honeycomb borophene/Al(111) heterostructure can be an ideal candidate to stabilize and enhance the catalysis of many transition metal (TM) SACs via a dual charge transfer mechanism. The Al(111) substrate donates electrons to the pre-covered two-dimensional honeycomb borophene (h-B) to stabilize the latter, and the deposited TM atoms further provide electrons to the h-B, enhancing the covalent binding between the h-B and the Al(111) substrate. Intriguingly, during CO oxidation, the h-B/Al(111) heterostructure can in turn serve as an efficient electron reservoir to accept electrons from or donate electrons to the deposited TM-SACs and the reactants. Such a flexible dual charge transfer mechanism not only facilitates stabilizing the TM-SACs rather than clustering, but also effectively reduces the reaction barriers. Particularly, in contrast to expensive noble metal atoms such as Pd and Pt, low-cost Sc- and Fe-SACs are found to be the most promising SAC candidates that can be stabilized on h-B/Al(111) for O2 activation and CO oxidation, with fairly low reaction barriers (around 0.50-0.65 eV). The present findings may provide important theoretical guidance for the experimental fabrication of highly stable, efficient, and economic SACs stabilized on various heterostructure substrates.
Read full abstract